00001 // Set implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 00004 // Free Software Foundation, Inc. 00005 // 00006 // This file is part of the GNU ISO C++ Library. This library is free 00007 // software; you can redistribute it and/or modify it under the 00008 // terms of the GNU General Public License as published by the 00009 // Free Software Foundation; either version 3, or (at your option) 00010 // any later version. 00011 00012 // This library is distributed in the hope that it will be useful, 00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 // GNU General Public License for more details. 00016 00017 // Under Section 7 of GPL version 3, you are granted additional 00018 // permissions described in the GCC Runtime Library Exception, version 00019 // 3.1, as published by the Free Software Foundation. 00020 00021 // You should have received a copy of the GNU General Public License and 00022 // a copy of the GCC Runtime Library Exception along with this program; 00023 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00024 // <http://www.gnu.org/licenses/>. 00025 00026 /* 00027 * 00028 * Copyright (c) 1994 00029 * Hewlett-Packard Company 00030 * 00031 * Permission to use, copy, modify, distribute and sell this software 00032 * and its documentation for any purpose is hereby granted without fee, 00033 * provided that the above copyright notice appear in all copies and 00034 * that both that copyright notice and this permission notice appear 00035 * in supporting documentation. Hewlett-Packard Company makes no 00036 * representations about the suitability of this software for any 00037 * purpose. It is provided "as is" without express or implied warranty. 00038 * 00039 * 00040 * Copyright (c) 1996,1997 00041 * Silicon Graphics Computer Systems, Inc. 00042 * 00043 * Permission to use, copy, modify, distribute and sell this software 00044 * and its documentation for any purpose is hereby granted without fee, 00045 * provided that the above copyright notice appear in all copies and 00046 * that both that copyright notice and this permission notice appear 00047 * in supporting documentation. Silicon Graphics makes no 00048 * representations about the suitability of this software for any 00049 * purpose. It is provided "as is" without express or implied warranty. 00050 */ 00051 00052 /** @file stl_set.h 00053 * This is an internal header file, included by other library headers. 00054 * You should not attempt to use it directly. 00055 */ 00056 00057 #ifndef _STL_SET_H 00058 #define _STL_SET_H 1 00059 00060 #include <bits/concept_check.h> 00061 #include <initializer_list> 00062 00063 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D) 00064 00065 /** 00066 * @brief A standard container made up of unique keys, which can be 00067 * retrieved in logarithmic time. 00068 * 00069 * @ingroup associative_containers 00070 * 00071 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00072 * <a href="tables.html#66">reversible container</a>, and an 00073 * <a href="tables.html#69">associative container</a> (using unique keys). 00074 * 00075 * Sets support bidirectional iterators. 00076 * 00077 * @param Key Type of key objects. 00078 * @param Compare Comparison function object type, defaults to less<Key>. 00079 * @param Alloc Allocator type, defaults to allocator<Key>. 00080 * 00081 * The private tree data is declared exactly the same way for set and 00082 * multiset; the distinction is made entirely in how the tree functions are 00083 * called (*_unique versus *_equal, same as the standard). 00084 */ 00085 template<typename _Key, typename _Compare = std::less<_Key>, 00086 typename _Alloc = std::allocator<_Key> > 00087 class set 00088 { 00089 // concept requirements 00090 typedef typename _Alloc::value_type _Alloc_value_type; 00091 __glibcxx_class_requires(_Key, _SGIAssignableConcept) 00092 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00093 _BinaryFunctionConcept) 00094 __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept) 00095 00096 public: 00097 // typedefs: 00098 //@{ 00099 /// Public typedefs. 00100 typedef _Key key_type; 00101 typedef _Key value_type; 00102 typedef _Compare key_compare; 00103 typedef _Compare value_compare; 00104 typedef _Alloc allocator_type; 00105 //@} 00106 00107 private: 00108 typedef typename _Alloc::template rebind<_Key>::other _Key_alloc_type; 00109 00110 typedef _Rb_tree<key_type, value_type, _Identity<value_type>, 00111 key_compare, _Key_alloc_type> _Rep_type; 00112 _Rep_type _M_t; // Red-black tree representing set. 00113 00114 public: 00115 //@{ 00116 /// Iterator-related typedefs. 00117 typedef typename _Key_alloc_type::pointer pointer; 00118 typedef typename _Key_alloc_type::const_pointer const_pointer; 00119 typedef typename _Key_alloc_type::reference reference; 00120 typedef typename _Key_alloc_type::const_reference const_reference; 00121 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00122 // DR 103. set::iterator is required to be modifiable, 00123 // but this allows modification of keys. 00124 typedef typename _Rep_type::const_iterator iterator; 00125 typedef typename _Rep_type::const_iterator const_iterator; 00126 typedef typename _Rep_type::const_reverse_iterator reverse_iterator; 00127 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00128 typedef typename _Rep_type::size_type size_type; 00129 typedef typename _Rep_type::difference_type difference_type; 00130 //@} 00131 00132 // allocation/deallocation 00133 /** 00134 * @brief Default constructor creates no elements. 00135 */ 00136 set() 00137 : _M_t() { } 00138 00139 /** 00140 * @brief Creates a %set with no elements. 00141 * @param comp Comparator to use. 00142 * @param a An allocator object. 00143 */ 00144 explicit 00145 set(const _Compare& __comp, 00146 const allocator_type& __a = allocator_type()) 00147 : _M_t(__comp, __a) { } 00148 00149 /** 00150 * @brief Builds a %set from a range. 00151 * @param first An input iterator. 00152 * @param last An input iterator. 00153 * 00154 * Create a %set consisting of copies of the elements from [first,last). 00155 * This is linear in N if the range is already sorted, and NlogN 00156 * otherwise (where N is distance(first,last)). 00157 */ 00158 template<typename _InputIterator> 00159 set(_InputIterator __first, _InputIterator __last) 00160 : _M_t() 00161 { _M_t._M_insert_unique(__first, __last); } 00162 00163 /** 00164 * @brief Builds a %set from a range. 00165 * @param first An input iterator. 00166 * @param last An input iterator. 00167 * @param comp A comparison functor. 00168 * @param a An allocator object. 00169 * 00170 * Create a %set consisting of copies of the elements from [first,last). 00171 * This is linear in N if the range is already sorted, and NlogN 00172 * otherwise (where N is distance(first,last)). 00173 */ 00174 template<typename _InputIterator> 00175 set(_InputIterator __first, _InputIterator __last, 00176 const _Compare& __comp, 00177 const allocator_type& __a = allocator_type()) 00178 : _M_t(__comp, __a) 00179 { _M_t._M_insert_unique(__first, __last); } 00180 00181 /** 00182 * @brief %Set copy constructor. 00183 * @param x A %set of identical element and allocator types. 00184 * 00185 * The newly-created %set uses a copy of the allocation object used 00186 * by @a x. 00187 */ 00188 set(const set& __x) 00189 : _M_t(__x._M_t) { } 00190 00191 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00192 /** 00193 * @brief %Set move constructor 00194 * @param x A %set of identical element and allocator types. 00195 * 00196 * The newly-created %set contains the exact contents of @a x. 00197 * The contents of @a x are a valid, but unspecified %set. 00198 */ 00199 set(set&& __x) 00200 : _M_t(std::forward<_Rep_type>(__x._M_t)) { } 00201 00202 /** 00203 * @brief Builds a %set from an initializer_list. 00204 * @param l An initializer_list. 00205 * @param comp A comparison functor. 00206 * @param a An allocator object. 00207 * 00208 * Create a %set consisting of copies of the elements in the list. 00209 * This is linear in N if the list is already sorted, and NlogN 00210 * otherwise (where N is @a l.size()). 00211 */ 00212 set(initializer_list<value_type> __l, 00213 const _Compare& __comp = _Compare(), 00214 const allocator_type& __a = allocator_type()) 00215 : _M_t(__comp, __a) 00216 { _M_t._M_insert_unique(__l.begin(), __l.end()); } 00217 #endif 00218 00219 /** 00220 * @brief %Set assignment operator. 00221 * @param x A %set of identical element and allocator types. 00222 * 00223 * All the elements of @a x are copied, but unlike the copy constructor, 00224 * the allocator object is not copied. 00225 */ 00226 set& 00227 operator=(const set& __x) 00228 { 00229 _M_t = __x._M_t; 00230 return *this; 00231 } 00232 00233 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00234 /** 00235 * @brief %Set move assignment operator. 00236 * @param x A %set of identical element and allocator types. 00237 * 00238 * The contents of @a x are moved into this %set (without copying). 00239 * @a x is a valid, but unspecified %set. 00240 */ 00241 set& 00242 operator=(set&& __x) 00243 { 00244 // NB: DR 675. 00245 this->clear(); 00246 this->swap(__x); 00247 return *this; 00248 } 00249 00250 /** 00251 * @brief %Set list assignment operator. 00252 * @param l An initializer_list. 00253 * 00254 * This function fills a %set with copies of the elements in the 00255 * initializer list @a l. 00256 * 00257 * Note that the assignment completely changes the %set and 00258 * that the resulting %set's size is the same as the number 00259 * of elements assigned. Old data may be lost. 00260 */ 00261 set& 00262 operator=(initializer_list<value_type> __l) 00263 { 00264 this->clear(); 00265 this->insert(__l.begin(), __l.end()); 00266 return *this; 00267 } 00268 #endif 00269 00270 // accessors: 00271 00272 /// Returns the comparison object with which the %set was constructed. 00273 key_compare 00274 key_comp() const 00275 { return _M_t.key_comp(); } 00276 /// Returns the comparison object with which the %set was constructed. 00277 value_compare 00278 value_comp() const 00279 { return _M_t.key_comp(); } 00280 /// Returns the allocator object with which the %set was constructed. 00281 allocator_type 00282 get_allocator() const 00283 { return _M_t.get_allocator(); } 00284 00285 /** 00286 * Returns a read-only (constant) iterator that points to the first 00287 * element in the %set. Iteration is done in ascending order according 00288 * to the keys. 00289 */ 00290 iterator 00291 begin() const 00292 { return _M_t.begin(); } 00293 00294 /** 00295 * Returns a read-only (constant) iterator that points one past the last 00296 * element in the %set. Iteration is done in ascending order according 00297 * to the keys. 00298 */ 00299 iterator 00300 end() const 00301 { return _M_t.end(); } 00302 00303 /** 00304 * Returns a read-only (constant) iterator that points to the last 00305 * element in the %set. Iteration is done in descending order according 00306 * to the keys. 00307 */ 00308 reverse_iterator 00309 rbegin() const 00310 { return _M_t.rbegin(); } 00311 00312 /** 00313 * Returns a read-only (constant) reverse iterator that points to the 00314 * last pair in the %set. Iteration is done in descending order 00315 * according to the keys. 00316 */ 00317 reverse_iterator 00318 rend() const 00319 { return _M_t.rend(); } 00320 00321 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00322 /** 00323 * Returns a read-only (constant) iterator that points to the first 00324 * element in the %set. Iteration is done in ascending order according 00325 * to the keys. 00326 */ 00327 iterator 00328 cbegin() const 00329 { return _M_t.begin(); } 00330 00331 /** 00332 * Returns a read-only (constant) iterator that points one past the last 00333 * element in the %set. Iteration is done in ascending order according 00334 * to the keys. 00335 */ 00336 iterator 00337 cend() const 00338 { return _M_t.end(); } 00339 00340 /** 00341 * Returns a read-only (constant) iterator that points to the last 00342 * element in the %set. Iteration is done in descending order according 00343 * to the keys. 00344 */ 00345 reverse_iterator 00346 crbegin() const 00347 { return _M_t.rbegin(); } 00348 00349 /** 00350 * Returns a read-only (constant) reverse iterator that points to the 00351 * last pair in the %set. Iteration is done in descending order 00352 * according to the keys. 00353 */ 00354 reverse_iterator 00355 crend() const 00356 { return _M_t.rend(); } 00357 #endif 00358 00359 /// Returns true if the %set is empty. 00360 bool 00361 empty() const 00362 { return _M_t.empty(); } 00363 00364 /// Returns the size of the %set. 00365 size_type 00366 size() const 00367 { return _M_t.size(); } 00368 00369 /// Returns the maximum size of the %set. 00370 size_type 00371 max_size() const 00372 { return _M_t.max_size(); } 00373 00374 /** 00375 * @brief Swaps data with another %set. 00376 * @param x A %set of the same element and allocator types. 00377 * 00378 * This exchanges the elements between two sets in constant time. 00379 * (It is only swapping a pointer, an integer, and an instance of 00380 * the @c Compare type (which itself is often stateless and empty), so it 00381 * should be quite fast.) 00382 * Note that the global std::swap() function is specialized such that 00383 * std::swap(s1,s2) will feed to this function. 00384 */ 00385 void 00386 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00387 swap(set&& __x) 00388 #else 00389 swap(set& __x) 00390 #endif 00391 { _M_t.swap(__x._M_t); } 00392 00393 // insert/erase 00394 /** 00395 * @brief Attempts to insert an element into the %set. 00396 * @param x Element to be inserted. 00397 * @return A pair, of which the first element is an iterator that points 00398 * to the possibly inserted element, and the second is a bool 00399 * that is true if the element was actually inserted. 00400 * 00401 * This function attempts to insert an element into the %set. A %set 00402 * relies on unique keys and thus an element is only inserted if it is 00403 * not already present in the %set. 00404 * 00405 * Insertion requires logarithmic time. 00406 */ 00407 std::pair<iterator, bool> 00408 insert(const value_type& __x) 00409 { 00410 std::pair<typename _Rep_type::iterator, bool> __p = 00411 _M_t._M_insert_unique(__x); 00412 return std::pair<iterator, bool>(__p.first, __p.second); 00413 } 00414 00415 /** 00416 * @brief Attempts to insert an element into the %set. 00417 * @param position An iterator that serves as a hint as to where the 00418 * element should be inserted. 00419 * @param x Element to be inserted. 00420 * @return An iterator that points to the element with key of @a x (may 00421 * or may not be the element passed in). 00422 * 00423 * This function is not concerned about whether the insertion took place, 00424 * and thus does not return a boolean like the single-argument insert() 00425 * does. Note that the first parameter is only a hint and can 00426 * potentially improve the performance of the insertion process. A bad 00427 * hint would cause no gains in efficiency. 00428 * 00429 * For more on "hinting", see: 00430 * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html 00431 * 00432 * Insertion requires logarithmic time (if the hint is not taken). 00433 */ 00434 iterator 00435 insert(iterator __position, const value_type& __x) 00436 { return _M_t._M_insert_unique_(__position, __x); } 00437 00438 /** 00439 * @brief A template function that attempts to insert a range 00440 * of elements. 00441 * @param first Iterator pointing to the start of the range to be 00442 * inserted. 00443 * @param last Iterator pointing to the end of the range. 00444 * 00445 * Complexity similar to that of the range constructor. 00446 */ 00447 template<typename _InputIterator> 00448 void 00449 insert(_InputIterator __first, _InputIterator __last) 00450 { _M_t._M_insert_unique(__first, __last); } 00451 00452 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00453 /** 00454 * @brief Attempts to insert a list of elements into the %set. 00455 * @param list A std::initializer_list<value_type> of elements 00456 * to be inserted. 00457 * 00458 * Complexity similar to that of the range constructor. 00459 */ 00460 void 00461 insert(initializer_list<value_type> __l) 00462 { this->insert(__l.begin(), __l.end()); } 00463 #endif 00464 00465 /** 00466 * @brief Erases an element from a %set. 00467 * @param position An iterator pointing to the element to be erased. 00468 * 00469 * This function erases an element, pointed to by the given iterator, 00470 * from a %set. Note that this function only erases the element, and 00471 * that if the element is itself a pointer, the pointed-to memory is not 00472 * touched in any way. Managing the pointer is the user's responsibility. 00473 */ 00474 void 00475 erase(iterator __position) 00476 { _M_t.erase(__position); } 00477 00478 /** 00479 * @brief Erases elements according to the provided key. 00480 * @param x Key of element to be erased. 00481 * @return The number of elements erased. 00482 * 00483 * This function erases all the elements located by the given key from 00484 * a %set. 00485 * Note that this function only erases the element, and that if 00486 * the element is itself a pointer, the pointed-to memory is not touched 00487 * in any way. Managing the pointer is the user's responsibility. 00488 */ 00489 size_type 00490 erase(const key_type& __x) 00491 { return _M_t.erase(__x); } 00492 00493 /** 00494 * @brief Erases a [first,last) range of elements from a %set. 00495 * @param first Iterator pointing to the start of the range to be 00496 * erased. 00497 * @param last Iterator pointing to the end of the range to be erased. 00498 * 00499 * This function erases a sequence of elements from a %set. 00500 * Note that this function only erases the element, and that if 00501 * the element is itself a pointer, the pointed-to memory is not touched 00502 * in any way. Managing the pointer is the user's responsibility. 00503 */ 00504 void 00505 erase(iterator __first, iterator __last) 00506 { _M_t.erase(__first, __last); } 00507 00508 /** 00509 * Erases all elements in a %set. Note that this function only erases 00510 * the elements, and that if the elements themselves are pointers, the 00511 * pointed-to memory is not touched in any way. Managing the pointer is 00512 * the user's responsibility. 00513 */ 00514 void 00515 clear() 00516 { _M_t.clear(); } 00517 00518 // set operations: 00519 00520 /** 00521 * @brief Finds the number of elements. 00522 * @param x Element to located. 00523 * @return Number of elements with specified key. 00524 * 00525 * This function only makes sense for multisets; for set the result will 00526 * either be 0 (not present) or 1 (present). 00527 */ 00528 size_type 00529 count(const key_type& __x) const 00530 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; } 00531 00532 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00533 // 214. set::find() missing const overload 00534 //@{ 00535 /** 00536 * @brief Tries to locate an element in a %set. 00537 * @param x Element to be located. 00538 * @return Iterator pointing to sought-after element, or end() if not 00539 * found. 00540 * 00541 * This function takes a key and tries to locate the element with which 00542 * the key matches. If successful the function returns an iterator 00543 * pointing to the sought after element. If unsuccessful it returns the 00544 * past-the-end ( @c end() ) iterator. 00545 */ 00546 iterator 00547 find(const key_type& __x) 00548 { return _M_t.find(__x); } 00549 00550 const_iterator 00551 find(const key_type& __x) const 00552 { return _M_t.find(__x); } 00553 //@} 00554 00555 //@{ 00556 /** 00557 * @brief Finds the beginning of a subsequence matching given key. 00558 * @param x Key to be located. 00559 * @return Iterator pointing to first element equal to or greater 00560 * than key, or end(). 00561 * 00562 * This function returns the first element of a subsequence of elements 00563 * that matches the given key. If unsuccessful it returns an iterator 00564 * pointing to the first element that has a greater value than given key 00565 * or end() if no such element exists. 00566 */ 00567 iterator 00568 lower_bound(const key_type& __x) 00569 { return _M_t.lower_bound(__x); } 00570 00571 const_iterator 00572 lower_bound(const key_type& __x) const 00573 { return _M_t.lower_bound(__x); } 00574 //@} 00575 00576 //@{ 00577 /** 00578 * @brief Finds the end of a subsequence matching given key. 00579 * @param x Key to be located. 00580 * @return Iterator pointing to the first element 00581 * greater than key, or end(). 00582 */ 00583 iterator 00584 upper_bound(const key_type& __x) 00585 { return _M_t.upper_bound(__x); } 00586 00587 const_iterator 00588 upper_bound(const key_type& __x) const 00589 { return _M_t.upper_bound(__x); } 00590 //@} 00591 00592 //@{ 00593 /** 00594 * @brief Finds a subsequence matching given key. 00595 * @param x Key to be located. 00596 * @return Pair of iterators that possibly points to the subsequence 00597 * matching given key. 00598 * 00599 * This function is equivalent to 00600 * @code 00601 * std::make_pair(c.lower_bound(val), 00602 * c.upper_bound(val)) 00603 * @endcode 00604 * (but is faster than making the calls separately). 00605 * 00606 * This function probably only makes sense for multisets. 00607 */ 00608 std::pair<iterator, iterator> 00609 equal_range(const key_type& __x) 00610 { return _M_t.equal_range(__x); } 00611 00612 std::pair<const_iterator, const_iterator> 00613 equal_range(const key_type& __x) const 00614 { return _M_t.equal_range(__x); } 00615 //@} 00616 00617 template<typename _K1, typename _C1, typename _A1> 00618 friend bool 00619 operator==(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&); 00620 00621 template<typename _K1, typename _C1, typename _A1> 00622 friend bool 00623 operator<(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&); 00624 }; 00625 00626 00627 /** 00628 * @brief Set equality comparison. 00629 * @param x A %set. 00630 * @param y A %set of the same type as @a x. 00631 * @return True iff the size and elements of the sets are equal. 00632 * 00633 * This is an equivalence relation. It is linear in the size of the sets. 00634 * Sets are considered equivalent if their sizes are equal, and if 00635 * corresponding elements compare equal. 00636 */ 00637 template<typename _Key, typename _Compare, typename _Alloc> 00638 inline bool 00639 operator==(const set<_Key, _Compare, _Alloc>& __x, 00640 const set<_Key, _Compare, _Alloc>& __y) 00641 { return __x._M_t == __y._M_t; } 00642 00643 /** 00644 * @brief Set ordering relation. 00645 * @param x A %set. 00646 * @param y A %set of the same type as @a x. 00647 * @return True iff @a x is lexicographically less than @a y. 00648 * 00649 * This is a total ordering relation. It is linear in the size of the 00650 * maps. The elements must be comparable with @c <. 00651 * 00652 * See std::lexicographical_compare() for how the determination is made. 00653 */ 00654 template<typename _Key, typename _Compare, typename _Alloc> 00655 inline bool 00656 operator<(const set<_Key, _Compare, _Alloc>& __x, 00657 const set<_Key, _Compare, _Alloc>& __y) 00658 { return __x._M_t < __y._M_t; } 00659 00660 /// Returns !(x == y). 00661 template<typename _Key, typename _Compare, typename _Alloc> 00662 inline bool 00663 operator!=(const set<_Key, _Compare, _Alloc>& __x, 00664 const set<_Key, _Compare, _Alloc>& __y) 00665 { return !(__x == __y); } 00666 00667 /// Returns y < x. 00668 template<typename _Key, typename _Compare, typename _Alloc> 00669 inline bool 00670 operator>(const set<_Key, _Compare, _Alloc>& __x, 00671 const set<_Key, _Compare, _Alloc>& __y) 00672 { return __y < __x; } 00673 00674 /// Returns !(y < x) 00675 template<typename _Key, typename _Compare, typename _Alloc> 00676 inline bool 00677 operator<=(const set<_Key, _Compare, _Alloc>& __x, 00678 const set<_Key, _Compare, _Alloc>& __y) 00679 { return !(__y < __x); } 00680 00681 /// Returns !(x < y) 00682 template<typename _Key, typename _Compare, typename _Alloc> 00683 inline bool 00684 operator>=(const set<_Key, _Compare, _Alloc>& __x, 00685 const set<_Key, _Compare, _Alloc>& __y) 00686 { return !(__x < __y); } 00687 00688 /// See std::set::swap(). 00689 template<typename _Key, typename _Compare, typename _Alloc> 00690 inline void 00691 swap(set<_Key, _Compare, _Alloc>& __x, set<_Key, _Compare, _Alloc>& __y) 00692 { __x.swap(__y); } 00693 00694 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00695 template<typename _Key, typename _Compare, typename _Alloc> 00696 inline void 00697 swap(set<_Key, _Compare, _Alloc>&& __x, set<_Key, _Compare, _Alloc>& __y) 00698 { __x.swap(__y); } 00699 00700 template<typename _Key, typename _Compare, typename _Alloc> 00701 inline void 00702 swap(set<_Key, _Compare, _Alloc>& __x, set<_Key, _Compare, _Alloc>&& __y) 00703 { __x.swap(__y); } 00704 #endif 00705 00706 _GLIBCXX_END_NESTED_NAMESPACE 00707 00708 #endif /* _STL_SET_H */