00001 // Multiset implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 00004 // Free Software Foundation, Inc. 00005 // 00006 // This file is part of the GNU ISO C++ Library. This library is free 00007 // software; you can redistribute it and/or modify it under the 00008 // terms of the GNU General Public License as published by the 00009 // Free Software Foundation; either version 3, or (at your option) 00010 // any later version. 00011 00012 // This library is distributed in the hope that it will be useful, 00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 // GNU General Public License for more details. 00016 00017 // Under Section 7 of GPL version 3, you are granted additional 00018 // permissions described in the GCC Runtime Library Exception, version 00019 // 3.1, as published by the Free Software Foundation. 00020 00021 // You should have received a copy of the GNU General Public License and 00022 // a copy of the GCC Runtime Library Exception along with this program; 00023 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00024 // <http://www.gnu.org/licenses/>. 00025 00026 /* 00027 * 00028 * Copyright (c) 1994 00029 * Hewlett-Packard Company 00030 * 00031 * Permission to use, copy, modify, distribute and sell this software 00032 * and its documentation for any purpose is hereby granted without fee, 00033 * provided that the above copyright notice appear in all copies and 00034 * that both that copyright notice and this permission notice appear 00035 * in supporting documentation. Hewlett-Packard Company makes no 00036 * representations about the suitability of this software for any 00037 * purpose. It is provided "as is" without express or implied warranty. 00038 * 00039 * 00040 * Copyright (c) 1996 00041 * Silicon Graphics Computer Systems, Inc. 00042 * 00043 * Permission to use, copy, modify, distribute and sell this software 00044 * and its documentation for any purpose is hereby granted without fee, 00045 * provided that the above copyright notice appear in all copies and 00046 * that both that copyright notice and this permission notice appear 00047 * in supporting documentation. Silicon Graphics makes no 00048 * representations about the suitability of this software for any 00049 * purpose. It is provided "as is" without express or implied warranty. 00050 */ 00051 00052 /** @file stl_multiset.h 00053 * This is an internal header file, included by other library headers. 00054 * You should not attempt to use it directly. 00055 */ 00056 00057 #ifndef _STL_MULTISET_H 00058 #define _STL_MULTISET_H 1 00059 00060 #include <bits/concept_check.h> 00061 #include <initializer_list> 00062 00063 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D) 00064 00065 /** 00066 * @brief A standard container made up of elements, which can be retrieved 00067 * in logarithmic time. 00068 * 00069 * @ingroup associative_containers 00070 * 00071 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00072 * <a href="tables.html#66">reversible container</a>, and an 00073 * <a href="tables.html#69">associative container</a> (using equivalent 00074 * keys). For a @c multiset<Key> the key_type and value_type are Key. 00075 * 00076 * Multisets support bidirectional iterators. 00077 * 00078 * The private tree data is declared exactly the same way for set and 00079 * multiset; the distinction is made entirely in how the tree functions are 00080 * called (*_unique versus *_equal, same as the standard). 00081 */ 00082 template <typename _Key, typename _Compare = std::less<_Key>, 00083 typename _Alloc = std::allocator<_Key> > 00084 class multiset 00085 { 00086 // concept requirements 00087 typedef typename _Alloc::value_type _Alloc_value_type; 00088 __glibcxx_class_requires(_Key, _SGIAssignableConcept) 00089 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00090 _BinaryFunctionConcept) 00091 __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept) 00092 00093 public: 00094 // typedefs: 00095 typedef _Key key_type; 00096 typedef _Key value_type; 00097 typedef _Compare key_compare; 00098 typedef _Compare value_compare; 00099 typedef _Alloc allocator_type; 00100 00101 private: 00102 /// This turns a red-black tree into a [multi]set. 00103 typedef typename _Alloc::template rebind<_Key>::other _Key_alloc_type; 00104 00105 typedef _Rb_tree<key_type, value_type, _Identity<value_type>, 00106 key_compare, _Key_alloc_type> _Rep_type; 00107 /// The actual tree structure. 00108 _Rep_type _M_t; 00109 00110 public: 00111 typedef typename _Key_alloc_type::pointer pointer; 00112 typedef typename _Key_alloc_type::const_pointer const_pointer; 00113 typedef typename _Key_alloc_type::reference reference; 00114 typedef typename _Key_alloc_type::const_reference const_reference; 00115 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00116 // DR 103. set::iterator is required to be modifiable, 00117 // but this allows modification of keys. 00118 typedef typename _Rep_type::const_iterator iterator; 00119 typedef typename _Rep_type::const_iterator const_iterator; 00120 typedef typename _Rep_type::const_reverse_iterator reverse_iterator; 00121 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00122 typedef typename _Rep_type::size_type size_type; 00123 typedef typename _Rep_type::difference_type difference_type; 00124 00125 // allocation/deallocation 00126 /** 00127 * @brief Default constructor creates no elements. 00128 */ 00129 multiset() 00130 : _M_t() { } 00131 00132 /** 00133 * @brief Creates a %multiset with no elements. 00134 * @param comp Comparator to use. 00135 * @param a An allocator object. 00136 */ 00137 explicit 00138 multiset(const _Compare& __comp, 00139 const allocator_type& __a = allocator_type()) 00140 : _M_t(__comp, __a) { } 00141 00142 /** 00143 * @brief Builds a %multiset from a range. 00144 * @param first An input iterator. 00145 * @param last An input iterator. 00146 * 00147 * Create a %multiset consisting of copies of the elements from 00148 * [first,last). This is linear in N if the range is already sorted, 00149 * and NlogN otherwise (where N is distance(first,last)). 00150 */ 00151 template<typename _InputIterator> 00152 multiset(_InputIterator __first, _InputIterator __last) 00153 : _M_t() 00154 { _M_t._M_insert_equal(__first, __last); } 00155 00156 /** 00157 * @brief Builds a %multiset from a range. 00158 * @param first An input iterator. 00159 * @param last An input iterator. 00160 * @param comp A comparison functor. 00161 * @param a An allocator object. 00162 * 00163 * Create a %multiset consisting of copies of the elements from 00164 * [first,last). This is linear in N if the range is already sorted, 00165 * and NlogN otherwise (where N is distance(first,last)). 00166 */ 00167 template<typename _InputIterator> 00168 multiset(_InputIterator __first, _InputIterator __last, 00169 const _Compare& __comp, 00170 const allocator_type& __a = allocator_type()) 00171 : _M_t(__comp, __a) 00172 { _M_t._M_insert_equal(__first, __last); } 00173 00174 /** 00175 * @brief %Multiset copy constructor. 00176 * @param x A %multiset of identical element and allocator types. 00177 * 00178 * The newly-created %multiset uses a copy of the allocation object used 00179 * by @a x. 00180 */ 00181 multiset(const multiset& __x) 00182 : _M_t(__x._M_t) { } 00183 00184 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00185 /** 00186 * @brief %Multiset move constructor. 00187 * @param x A %multiset of identical element and allocator types. 00188 * 00189 * The newly-created %multiset contains the exact contents of @a x. 00190 * The contents of @a x are a valid, but unspecified %multiset. 00191 */ 00192 multiset(multiset&& __x) 00193 : _M_t(std::forward<_Rep_type>(__x._M_t)) { } 00194 00195 /** 00196 * @brief Builds a %multiset from an initializer_list. 00197 * @param l An initializer_list. 00198 * @param comp A comparison functor. 00199 * @param a An allocator object. 00200 * 00201 * Create a %multiset consisting of copies of the elements from 00202 * the list. This is linear in N if the list is already sorted, 00203 * and NlogN otherwise (where N is @a l.size()). 00204 */ 00205 multiset(initializer_list<value_type> __l, 00206 const _Compare& __comp = _Compare(), 00207 const allocator_type& __a = allocator_type()) 00208 : _M_t(__comp, __a) 00209 { _M_t._M_insert_equal(__l.begin(), __l.end()); } 00210 #endif 00211 00212 /** 00213 * @brief %Multiset assignment operator. 00214 * @param x A %multiset of identical element and allocator types. 00215 * 00216 * All the elements of @a x are copied, but unlike the copy constructor, 00217 * the allocator object is not copied. 00218 */ 00219 multiset& 00220 operator=(const multiset& __x) 00221 { 00222 _M_t = __x._M_t; 00223 return *this; 00224 } 00225 00226 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00227 /** 00228 * @brief %Multiset move assignment operator. 00229 * @param x A %multiset of identical element and allocator types. 00230 * 00231 * The contents of @a x are moved into this %multiset (without copying). 00232 * @a x is a valid, but unspecified %multiset. 00233 */ 00234 multiset& 00235 operator=(multiset&& __x) 00236 { 00237 // NB: DR 675. 00238 this->clear(); 00239 this->swap(__x); 00240 return *this; 00241 } 00242 00243 /** 00244 * @brief %Multiset list assignment operator. 00245 * @param l An initializer_list. 00246 * 00247 * This function fills a %multiset with copies of the elements in the 00248 * initializer list @a l. 00249 * 00250 * Note that the assignment completely changes the %multiset and 00251 * that the resulting %multiset's size is the same as the number 00252 * of elements assigned. Old data may be lost. 00253 */ 00254 multiset& 00255 operator=(initializer_list<value_type> __l) 00256 { 00257 this->clear(); 00258 this->insert(__l.begin(), __l.end()); 00259 return *this; 00260 } 00261 #endif 00262 00263 // accessors: 00264 00265 /// Returns the comparison object. 00266 key_compare 00267 key_comp() const 00268 { return _M_t.key_comp(); } 00269 /// Returns the comparison object. 00270 value_compare 00271 value_comp() const 00272 { return _M_t.key_comp(); } 00273 /// Returns the memory allocation object. 00274 allocator_type 00275 get_allocator() const 00276 { return _M_t.get_allocator(); } 00277 00278 /** 00279 * Returns a read-only (constant) iterator that points to the first 00280 * element in the %multiset. Iteration is done in ascending order 00281 * according to the keys. 00282 */ 00283 iterator 00284 begin() const 00285 { return _M_t.begin(); } 00286 00287 /** 00288 * Returns a read-only (constant) iterator that points one past the last 00289 * element in the %multiset. Iteration is done in ascending order 00290 * according to the keys. 00291 */ 00292 iterator 00293 end() const 00294 { return _M_t.end(); } 00295 00296 /** 00297 * Returns a read-only (constant) reverse iterator that points to the 00298 * last element in the %multiset. Iteration is done in descending order 00299 * according to the keys. 00300 */ 00301 reverse_iterator 00302 rbegin() const 00303 { return _M_t.rbegin(); } 00304 00305 /** 00306 * Returns a read-only (constant) reverse iterator that points to the 00307 * last element in the %multiset. Iteration is done in descending order 00308 * according to the keys. 00309 */ 00310 reverse_iterator 00311 rend() const 00312 { return _M_t.rend(); } 00313 00314 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00315 /** 00316 * Returns a read-only (constant) iterator that points to the first 00317 * element in the %multiset. Iteration is done in ascending order 00318 * according to the keys. 00319 */ 00320 iterator 00321 cbegin() const 00322 { return _M_t.begin(); } 00323 00324 /** 00325 * Returns a read-only (constant) iterator that points one past the last 00326 * element in the %multiset. Iteration is done in ascending order 00327 * according to the keys. 00328 */ 00329 iterator 00330 cend() const 00331 { return _M_t.end(); } 00332 00333 /** 00334 * Returns a read-only (constant) reverse iterator that points to the 00335 * last element in the %multiset. Iteration is done in descending order 00336 * according to the keys. 00337 */ 00338 reverse_iterator 00339 crbegin() const 00340 { return _M_t.rbegin(); } 00341 00342 /** 00343 * Returns a read-only (constant) reverse iterator that points to the 00344 * last element in the %multiset. Iteration is done in descending order 00345 * according to the keys. 00346 */ 00347 reverse_iterator 00348 crend() const 00349 { return _M_t.rend(); } 00350 #endif 00351 00352 /// Returns true if the %set is empty. 00353 bool 00354 empty() const 00355 { return _M_t.empty(); } 00356 00357 /// Returns the size of the %set. 00358 size_type 00359 size() const 00360 { return _M_t.size(); } 00361 00362 /// Returns the maximum size of the %set. 00363 size_type 00364 max_size() const 00365 { return _M_t.max_size(); } 00366 00367 /** 00368 * @brief Swaps data with another %multiset. 00369 * @param x A %multiset of the same element and allocator types. 00370 * 00371 * This exchanges the elements between two multisets in constant time. 00372 * (It is only swapping a pointer, an integer, and an instance of the @c 00373 * Compare type (which itself is often stateless and empty), so it should 00374 * be quite fast.) 00375 * Note that the global std::swap() function is specialized such that 00376 * std::swap(s1,s2) will feed to this function. 00377 */ 00378 void 00379 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00380 swap(multiset&& __x) 00381 #else 00382 swap(multiset& __x) 00383 #endif 00384 { _M_t.swap(__x._M_t); } 00385 00386 // insert/erase 00387 /** 00388 * @brief Inserts an element into the %multiset. 00389 * @param x Element to be inserted. 00390 * @return An iterator that points to the inserted element. 00391 * 00392 * This function inserts an element into the %multiset. Contrary 00393 * to a std::set the %multiset does not rely on unique keys and thus 00394 * multiple copies of the same element can be inserted. 00395 * 00396 * Insertion requires logarithmic time. 00397 */ 00398 iterator 00399 insert(const value_type& __x) 00400 { return _M_t._M_insert_equal(__x); } 00401 00402 /** 00403 * @brief Inserts an element into the %multiset. 00404 * @param position An iterator that serves as a hint as to where the 00405 * element should be inserted. 00406 * @param x Element to be inserted. 00407 * @return An iterator that points to the inserted element. 00408 * 00409 * This function inserts an element into the %multiset. Contrary 00410 * to a std::set the %multiset does not rely on unique keys and thus 00411 * multiple copies of the same element can be inserted. 00412 * 00413 * Note that the first parameter is only a hint and can potentially 00414 * improve the performance of the insertion process. A bad hint would 00415 * cause no gains in efficiency. 00416 * 00417 * See http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html 00418 * for more on "hinting". 00419 * 00420 * Insertion requires logarithmic time (if the hint is not taken). 00421 */ 00422 iterator 00423 insert(iterator __position, const value_type& __x) 00424 { return _M_t._M_insert_equal_(__position, __x); } 00425 00426 /** 00427 * @brief A template function that attempts to insert a range of elements. 00428 * @param first Iterator pointing to the start of the range to be 00429 * inserted. 00430 * @param last Iterator pointing to the end of the range. 00431 * 00432 * Complexity similar to that of the range constructor. 00433 */ 00434 template<typename _InputIterator> 00435 void 00436 insert(_InputIterator __first, _InputIterator __last) 00437 { _M_t._M_insert_equal(__first, __last); } 00438 00439 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00440 /** 00441 * @brief Attempts to insert a list of elements into the %multiset. 00442 * @param list A std::initializer_list<value_type> of elements 00443 * to be inserted. 00444 * 00445 * Complexity similar to that of the range constructor. 00446 */ 00447 void 00448 insert(initializer_list<value_type> __l) 00449 { this->insert(__l.begin(), __l.end()); } 00450 #endif 00451 00452 /** 00453 * @brief Erases an element from a %multiset. 00454 * @param position An iterator pointing to the element to be erased. 00455 * 00456 * This function erases an element, pointed to by the given iterator, 00457 * from a %multiset. Note that this function only erases the element, 00458 * and that if the element is itself a pointer, the pointed-to memory is 00459 * not touched in any way. Managing the pointer is the user's 00460 * responsibility. 00461 */ 00462 void 00463 erase(iterator __position) 00464 { _M_t.erase(__position); } 00465 00466 /** 00467 * @brief Erases elements according to the provided key. 00468 * @param x Key of element to be erased. 00469 * @return The number of elements erased. 00470 * 00471 * This function erases all elements located by the given key from a 00472 * %multiset. 00473 * Note that this function only erases the element, and that if 00474 * the element is itself a pointer, the pointed-to memory is not touched 00475 * in any way. Managing the pointer is the user's responsibility. 00476 */ 00477 size_type 00478 erase(const key_type& __x) 00479 { return _M_t.erase(__x); } 00480 00481 /** 00482 * @brief Erases a [first,last) range of elements from a %multiset. 00483 * @param first Iterator pointing to the start of the range to be 00484 * erased. 00485 * @param last Iterator pointing to the end of the range to be erased. 00486 * 00487 * This function erases a sequence of elements from a %multiset. 00488 * Note that this function only erases the elements, and that if 00489 * the elements themselves are pointers, the pointed-to memory is not 00490 * touched in any way. Managing the pointer is the user's responsibility. 00491 */ 00492 void 00493 erase(iterator __first, iterator __last) 00494 { _M_t.erase(__first, __last); } 00495 00496 /** 00497 * Erases all elements in a %multiset. Note that this function only 00498 * erases the elements, and that if the elements themselves are pointers, 00499 * the pointed-to memory is not touched in any way. Managing the pointer 00500 * is the user's responsibility. 00501 */ 00502 void 00503 clear() 00504 { _M_t.clear(); } 00505 00506 // multiset operations: 00507 00508 /** 00509 * @brief Finds the number of elements with given key. 00510 * @param x Key of elements to be located. 00511 * @return Number of elements with specified key. 00512 */ 00513 size_type 00514 count(const key_type& __x) const 00515 { return _M_t.count(__x); } 00516 00517 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00518 // 214. set::find() missing const overload 00519 //@{ 00520 /** 00521 * @brief Tries to locate an element in a %set. 00522 * @param x Element to be located. 00523 * @return Iterator pointing to sought-after element, or end() if not 00524 * found. 00525 * 00526 * This function takes a key and tries to locate the element with which 00527 * the key matches. If successful the function returns an iterator 00528 * pointing to the sought after element. If unsuccessful it returns the 00529 * past-the-end ( @c end() ) iterator. 00530 */ 00531 iterator 00532 find(const key_type& __x) 00533 { return _M_t.find(__x); } 00534 00535 const_iterator 00536 find(const key_type& __x) const 00537 { return _M_t.find(__x); } 00538 //@} 00539 00540 //@{ 00541 /** 00542 * @brief Finds the beginning of a subsequence matching given key. 00543 * @param x Key to be located. 00544 * @return Iterator pointing to first element equal to or greater 00545 * than key, or end(). 00546 * 00547 * This function returns the first element of a subsequence of elements 00548 * that matches the given key. If unsuccessful it returns an iterator 00549 * pointing to the first element that has a greater value than given key 00550 * or end() if no such element exists. 00551 */ 00552 iterator 00553 lower_bound(const key_type& __x) 00554 { return _M_t.lower_bound(__x); } 00555 00556 const_iterator 00557 lower_bound(const key_type& __x) const 00558 { return _M_t.lower_bound(__x); } 00559 //@} 00560 00561 //@{ 00562 /** 00563 * @brief Finds the end of a subsequence matching given key. 00564 * @param x Key to be located. 00565 * @return Iterator pointing to the first element 00566 * greater than key, or end(). 00567 */ 00568 iterator 00569 upper_bound(const key_type& __x) 00570 { return _M_t.upper_bound(__x); } 00571 00572 const_iterator 00573 upper_bound(const key_type& __x) const 00574 { return _M_t.upper_bound(__x); } 00575 //@} 00576 00577 //@{ 00578 /** 00579 * @brief Finds a subsequence matching given key. 00580 * @param x Key to be located. 00581 * @return Pair of iterators that possibly points to the subsequence 00582 * matching given key. 00583 * 00584 * This function is equivalent to 00585 * @code 00586 * std::make_pair(c.lower_bound(val), 00587 * c.upper_bound(val)) 00588 * @endcode 00589 * (but is faster than making the calls separately). 00590 * 00591 * This function probably only makes sense for multisets. 00592 */ 00593 std::pair<iterator, iterator> 00594 equal_range(const key_type& __x) 00595 { return _M_t.equal_range(__x); } 00596 00597 std::pair<const_iterator, const_iterator> 00598 equal_range(const key_type& __x) const 00599 { return _M_t.equal_range(__x); } 00600 00601 template<typename _K1, typename _C1, typename _A1> 00602 friend bool 00603 operator==(const multiset<_K1, _C1, _A1>&, 00604 const multiset<_K1, _C1, _A1>&); 00605 00606 template<typename _K1, typename _C1, typename _A1> 00607 friend bool 00608 operator< (const multiset<_K1, _C1, _A1>&, 00609 const multiset<_K1, _C1, _A1>&); 00610 }; 00611 00612 /** 00613 * @brief Multiset equality comparison. 00614 * @param x A %multiset. 00615 * @param y A %multiset of the same type as @a x. 00616 * @return True iff the size and elements of the multisets are equal. 00617 * 00618 * This is an equivalence relation. It is linear in the size of the 00619 * multisets. 00620 * Multisets are considered equivalent if their sizes are equal, and if 00621 * corresponding elements compare equal. 00622 */ 00623 template<typename _Key, typename _Compare, typename _Alloc> 00624 inline bool 00625 operator==(const multiset<_Key, _Compare, _Alloc>& __x, 00626 const multiset<_Key, _Compare, _Alloc>& __y) 00627 { return __x._M_t == __y._M_t; } 00628 00629 /** 00630 * @brief Multiset ordering relation. 00631 * @param x A %multiset. 00632 * @param y A %multiset of the same type as @a x. 00633 * @return True iff @a x is lexicographically less than @a y. 00634 * 00635 * This is a total ordering relation. It is linear in the size of the 00636 * maps. The elements must be comparable with @c <. 00637 * 00638 * See std::lexicographical_compare() for how the determination is made. 00639 */ 00640 template<typename _Key, typename _Compare, typename _Alloc> 00641 inline bool 00642 operator<(const multiset<_Key, _Compare, _Alloc>& __x, 00643 const multiset<_Key, _Compare, _Alloc>& __y) 00644 { return __x._M_t < __y._M_t; } 00645 00646 /// Returns !(x == y). 00647 template<typename _Key, typename _Compare, typename _Alloc> 00648 inline bool 00649 operator!=(const multiset<_Key, _Compare, _Alloc>& __x, 00650 const multiset<_Key, _Compare, _Alloc>& __y) 00651 { return !(__x == __y); } 00652 00653 /// Returns y < x. 00654 template<typename _Key, typename _Compare, typename _Alloc> 00655 inline bool 00656 operator>(const multiset<_Key,_Compare,_Alloc>& __x, 00657 const multiset<_Key,_Compare,_Alloc>& __y) 00658 { return __y < __x; } 00659 00660 /// Returns !(y < x) 00661 template<typename _Key, typename _Compare, typename _Alloc> 00662 inline bool 00663 operator<=(const multiset<_Key, _Compare, _Alloc>& __x, 00664 const multiset<_Key, _Compare, _Alloc>& __y) 00665 { return !(__y < __x); } 00666 00667 /// Returns !(x < y) 00668 template<typename _Key, typename _Compare, typename _Alloc> 00669 inline bool 00670 operator>=(const multiset<_Key, _Compare, _Alloc>& __x, 00671 const multiset<_Key, _Compare, _Alloc>& __y) 00672 { return !(__x < __y); } 00673 00674 /// See std::multiset::swap(). 00675 template<typename _Key, typename _Compare, typename _Alloc> 00676 inline void 00677 swap(multiset<_Key, _Compare, _Alloc>& __x, 00678 multiset<_Key, _Compare, _Alloc>& __y) 00679 { __x.swap(__y); } 00680 00681 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00682 template<typename _Key, typename _Compare, typename _Alloc> 00683 inline void 00684 swap(multiset<_Key, _Compare, _Alloc>&& __x, 00685 multiset<_Key, _Compare, _Alloc>& __y) 00686 { __x.swap(__y); } 00687 00688 template<typename _Key, typename _Compare, typename _Alloc> 00689 inline void 00690 swap(multiset<_Key, _Compare, _Alloc>& __x, 00691 multiset<_Key, _Compare, _Alloc>&& __y) 00692 { __x.swap(__y); } 00693 #endif 00694 00695 _GLIBCXX_END_NESTED_NAMESPACE 00696 00697 #endif /* _STL_MULTISET_H */