![]() |
Classes and functions for complex numbers.
_Tp std::abs | ( | const complex< _Tp > & | __z | ) | [inline] |
Return magnitude of z.
Definition at line 594 of file complex.
Referenced by std::tr1::__detail::__airy(), std::tr1::__detail::__bessel_ik(), std::tr1::__detail::__bessel_jn(), std::tr1::__detail::__comp_ellint_1(), std::tr1::__detail::__comp_ellint_2(), std::tr1::__detail::__comp_ellint_3(), std::tr1::__detail::__conf_hyperg_luke(), std::tr1::__detail::__conf_hyperg_series(), std::tr1::__detail::__cyl_bessel_ij_series(), std::tr1::__detail::__ellint_1(), std::tr1::__detail::__ellint_2(), std::tr1::__detail::__ellint_3(), std::tr1::__detail::__ellint_rc(), std::tr1::__detail::__ellint_rd(), std::tr1::__detail::__ellint_rf(), std::tr1::__detail::__ellint_rj(), std::tr1::__detail::__expint_asymp(), std::tr1::__detail::__expint_E1_asymp(), std::tr1::__detail::__expint_E1_series(), std::tr1::__detail::__expint_En_cont_frac(), std::tr1::__detail::__expint_En_series(), std::tr1::__detail::__expint_large_n(), std::tr1::__detail::__gamma_temme(), std::tr1::__detail::__hurwitz_zeta_glob(), std::tr1::__detail::__hyperg(), std::tr1::__detail::__hyperg_luke(), std::tr1::__detail::__hyperg_reflect(), std::tr1::__detail::__hyperg_series(), std::tr1::__detail::__log_gamma(), std::tr1::__detail::__poly_laguerre_hyperg(), std::tr1::__detail::__psi(), std::tr1::__detail::__psi_asymp(), std::tr1::__detail::__psi_series(), std::tr1::__detail::__riemann_zeta_alt(), std::tr1::__detail::__riemann_zeta_glob(), std::fabs(), std::binomial_distribution< _IntType, _RealType >::operator()(), and std::poisson_distribution< _IntType, _RealType >::operator()().
std::complex< _Tp > std::acos | ( | const std::complex< _Tp > & | __z | ) | [inline] |
acos(__z) [8.1.2].
Definition at line 86 of file tr1_impl/complex.
std::complex< _Tp > std::acosh | ( | const std::complex< _Tp > & | __z | ) | [inline] |
acosh(__z) [8.1.5].
Definition at line 205 of file tr1_impl/complex.
__gnu_cxx::__promote<_Tp>::__type std::arg | ( | _Tp | __x | ) | [inline] |
Additional overloads [8.1.9].
Definition at line 311 of file tr1_impl/complex.
References std::arg().
_Tp std::arg | ( | const complex< _Tp > & | __z | ) | [inline] |
std::complex< _Tp > std::asin | ( | const std::complex< _Tp > & | __z | ) | [inline] |
asin(__z) [8.1.3].
Definition at line 122 of file tr1_impl/complex.
std::complex< _Tp > std::asinh | ( | const std::complex< _Tp > & | __z | ) | [inline] |
asinh(__z) [8.1.6].
Definition at line 244 of file tr1_impl/complex.
std::complex< _Tp > std::atan | ( | const std::complex< _Tp > & | __z | ) | [inline] |
atan(__z) [8.1.4].
Definition at line 166 of file tr1_impl/complex.
std::complex< _Tp > std::atanh | ( | const std::complex< _Tp > & | __z | ) | [inline] |
atanh(__z) [8.1.7].
Definition at line 288 of file tr1_impl/complex.
complex< _Tp > std::conj | ( | const complex< _Tp > & | __z | ) | [inline] |
complex< _Tp > std::cos | ( | const complex< _Tp > & | __z | ) | [inline] |
Return complex cosine of z.
Definition at line 699 of file complex.
Referenced by std::tr1::__detail::__cyl_bessel_jn_asymp(), std::tr1::__detail::__ellint_1(), std::tr1::__detail::__ellint_2(), std::tr1::__detail::__ellint_3(), std::tr1::__detail::__psi(), std::tr1::__detail::__sph_legendre(), and std::polar().
complex< _Tp > std::cosh | ( | const complex< _Tp > & | __z | ) | [inline] |
Return complex hyperbolic cosine of z.
Definition at line 729 of file complex.
Referenced by std::tr1::__detail::__bessel_ik(), and std::tr1::__detail::__bessel_jn().
complex< _Tp > std::exp | ( | const complex< _Tp > & | __z | ) | [inline] |
Return complex base e exponential of z.
Definition at line 755 of file complex.
Referenced by std::tr1::__detail::__bessel_ik(), std::tr1::__detail::__bessel_jn(), std::tr1::__detail::__beta_lgamma(), std::tr1::__detail::__bincoef(), std::tr1::__detail::__conf_hyperg(), std::tr1::__detail::__cyl_bessel_ij_series(), std::tr1::__detail::__expint(), std::tr1::__detail::__expint_asymp(), std::tr1::__detail::__expint_E1_asymp(), std::tr1::__detail::__expint_Ei_asymp(), std::tr1::__detail::__expint_En_cont_frac(), std::tr1::__detail::__expint_En_recursion(), std::tr1::__detail::__expint_large_n(), std::tr1::__detail::__gamma(), std::tr1::__detail::__hurwitz_zeta_glob(), std::tr1::__detail::__hyperg_reflect(), std::tr1::__detail::__poly_laguerre_large_n(), std::tr1::__detail::__psi(), std::tr1::__detail::__riemann_zeta(), std::tr1::__detail::__riemann_zeta_glob(), std::tr1::__detail::__sph_legendre(), std::gamma_distribution< _RealType >::operator()(), and std::pow().
_Tp std::fabs | ( | const std::complex< _Tp > & | __z | ) | [inline] |
complex< _Tp > std::log | ( | const complex< _Tp > & | __z | ) | [inline] |
Return complex natural logarithm of z.
Definition at line 782 of file complex.
Referenced by std::tr1::__detail::__bessel_ik(), std::tr1::__detail::__bessel_jn(), std::tr1::__detail::__bincoef(), std::tr1::__detail::__cyl_bessel_ij_series(), std::tr1::__detail::__expint_E1_series(), std::tr1::__detail::__expint_Ei(), std::tr1::__detail::__expint_Ei_series(), std::tr1::__detail::__expint_En_series(), std::tr1::__detail::__hurwitz_zeta_glob(), std::tr1::__detail::__hyperg_reflect(), std::tr1::__detail::__log_bincoef(), std::tr1::__detail::__log_gamma(), std::tr1::__detail::__log_gamma_bernoulli(), std::tr1::__detail::__log_gamma_lanczos(), std::tr1::__detail::__poly_laguerre_large_n(), std::tr1::__detail::__psi_asymp(), std::tr1::__detail::__riemann_zeta_glob(), std::tr1::__detail::__sph_legendre(), std::log10(), std::gamma_distribution< _RealType >::operator()(), std::normal_distribution< _RealType >::operator()(), std::binomial_distribution< _IntType, _RealType >::operator()(), std::poisson_distribution< _IntType, _RealType >::operator()(), and std::pow().
complex< _Tp > std::log10 | ( | const complex< _Tp > & | __z | ) | [inline] |
Return complex base 10 logarithm of z.
Definition at line 787 of file complex.
References std::log().
_Tp std::norm | ( | const complex< _Tp > & | __z | ) | [inline] |
Return z magnitude squared.
Definition at line 654 of file complex.
Referenced by std::complex< _Tp >::operator/=().
bool std::operator!= | ( | const _Tp & | __x, | |
const complex< _Tp > & | __y | |||
) | [inline] |
bool std::operator!= | ( | const complex< _Tp > & | __x, | |
const _Tp & | __y | |||
) | [inline] |
bool std::operator!= | ( | const complex< _Tp > & | __x, | |
const complex< _Tp > & | __y | |||
) | [inline] |
complex<_Tp> std::operator* | ( | const _Tp & | __x, | |
const complex< _Tp > & | __y | |||
) | [inline] |
complex<_Tp> std::operator* | ( | const complex< _Tp > & | __x, | |
const _Tp & | __y | |||
) | [inline] |
complex<_Tp> std::operator* | ( | const complex< _Tp > & | __x, | |
const complex< _Tp > & | __y | |||
) | [inline] |
complex< _Tp > & std::complex< _Tp >::operator*= | ( | const complex< _Up > & | __z | ) | [inline, inherited] |
complex< _Tp > & std::complex< _Tp >::operator*= | ( | const _Tp & | __t | ) | [inline, inherited] |
complex<_Tp> std::operator+ | ( | const complex< _Tp > & | __x | ) | [inline] |
complex<_Tp> std::operator+ | ( | const _Tp & | __x, | |
const complex< _Tp > & | __y | |||
) | [inline] |
complex<_Tp> std::operator+ | ( | const complex< _Tp > & | __x, | |
const _Tp & | __y | |||
) | [inline] |
complex<_Tp> std::operator+ | ( | const complex< _Tp > & | __x, | |
const complex< _Tp > & | __y | |||
) | [inline] |
complex< _Tp > & std::complex< _Tp >::operator+= | ( | const complex< _Up > & | __z | ) | [inline, inherited] |
complex<_Tp> std::operator- | ( | const complex< _Tp > & | __x | ) | [inline] |
complex<_Tp> std::operator- | ( | const _Tp & | __x, | |
const complex< _Tp > & | __y | |||
) | [inline] |
complex<_Tp> std::operator- | ( | const complex< _Tp > & | __x, | |
const _Tp & | __y | |||
) | [inline] |
complex<_Tp> std::operator- | ( | const complex< _Tp > & | __x, | |
const complex< _Tp > & | __y | |||
) | [inline] |
complex< _Tp > & std::complex< _Tp >::operator-= | ( | const complex< _Up > & | __z | ) | [inline, inherited] |
complex<_Tp> std::operator/ | ( | const _Tp & | __x, | |
const complex< _Tp > & | __y | |||
) | [inline] |
complex<_Tp> std::operator/ | ( | const complex< _Tp > & | __x, | |
const _Tp & | __y | |||
) | [inline] |
complex<_Tp> std::operator/ | ( | const complex< _Tp > & | __x, | |
const complex< _Tp > & | __y | |||
) | [inline] |
complex< _Tp > & std::complex< _Tp >::operator/= | ( | const complex< _Up > & | __z | ) | [inline, inherited] |
complex< _Tp > & std::complex< _Tp >::operator/= | ( | const _Tp & | __t | ) | [inline, inherited] |
basic_ostream<_CharT, _Traits>& std::operator<< | ( | basic_ostream< _CharT, _Traits > & | __os, | |
const complex< _Tp > & | __x | |||
) | [inline] |
Insertion operator for complex values.
Definition at line 519 of file complex.
References std::ios_base::flags(), std::basic_ios< _CharT, _Traits >::imbue(), std::ios_base::precision(), and std::basic_ostringstream< _CharT, _Traits, _Alloc >::str().
complex< _Tp > & std::complex< _Tp >::operator= | ( | const complex< _Up > & | __z | ) | [inline, inherited] |
complex< _Tp > & std::complex< _Tp >::operator= | ( | const _Tp & | __t | ) | [inline, inherited] |
bool std::operator== | ( | const _Tp & | __x, | |
const complex< _Tp > & | __y | |||
) | [inline] |
bool std::operator== | ( | const complex< _Tp > & | __x, | |
const _Tp & | __y | |||
) | [inline] |
bool std::operator== | ( | const complex< _Tp > & | __x, | |
const complex< _Tp > & | __y | |||
) | [inline] |
basic_istream<_CharT, _Traits>& std::operator>> | ( | basic_istream< _CharT, _Traits > & | __is, | |
complex< _Tp > & | __x | |||
) | [inline] |
Extraction operator for complex values.
Definition at line 486 of file complex.
References std::ios_base::failbit, std::basic_istream< _CharT, _Traits >::putback(), and std::basic_ios< _CharT, _Traits >::setstate().
complex< _Tp > std::polar | ( | const _Tp & | __rho, | |
const _Tp & | __theta = 0 | |||
) | [inline] |
Return complex with magnitude rho and angle theta.
Definition at line 662 of file complex.
References std::cos(), and std::sin().
Referenced by std::pow().
complex< _Tp > std::pow | ( | const _Tp & | __x, | |
const complex< _Tp > & | __y | |||
) | [inline] |
Return x to the y'th power.
Definition at line 1009 of file complex.
References std::log(), std::polar(), and std::pow().
complex< _Tp > std::pow | ( | const complex< _Tp > & | __x, | |
const complex< _Tp > & | __y | |||
) | [inline] |
complex< _Tp > std::pow | ( | const complex< _Tp > & | __x, | |
const _Tp & | __y | |||
) | [inline] |
Return x to the y'th power.
Definition at line 964 of file complex.
References std::exp(), std::log(), and std::polar().
Referenced by std::tr1::__detail::__bernoulli_series(), std::tr1::__detail::__conf_hyperg_luke(), std::tr1::__detail::__ellint_rc(), std::tr1::__detail::__ellint_rd(), std::tr1::__detail::__ellint_rf(), std::tr1::__detail::__ellint_rj(), std::tr1::__detail::__hurwitz_zeta_glob(), std::tr1::__detail::__hyperg(), std::tr1::__detail::__hyperg_luke(), std::tr1::__detail::__riemann_zeta(), std::tr1::__detail::__riemann_zeta_alt(), std::tr1::__detail::__riemann_zeta_glob(), std::tr1::__detail::__riemann_zeta_product(), std::tr1::__detail::__riemann_zeta_sum(), std::gamma_distribution< _RealType >::operator()(), and std::pow().
complex< _Tp > std::sin | ( | const complex< _Tp > & | __z | ) | [inline] |
Return complex sine of z.
Definition at line 817 of file complex.
Referenced by std::tr1::__detail::__bessel_ik(), std::tr1::__detail::__bessel_jn(), std::tr1::__detail::__cyl_bessel_jn_asymp(), std::tr1::__detail::__ellint_1(), std::tr1::__detail::__ellint_2(), std::tr1::__detail::__ellint_3(), std::tr1::__detail::__log_gamma(), std::tr1::__detail::__log_gamma_sign(), std::tr1::__detail::__poly_laguerre_large_n(), std::tr1::__detail::__psi(), std::tr1::__detail::__riemann_zeta(), std::tr1::__detail::__riemann_zeta_glob(), and std::polar().
complex< _Tp > std::sinh | ( | const complex< _Tp > & | __z | ) | [inline] |
Return complex hyperbolic sine of z.
Definition at line 847 of file complex.
Referenced by std::tr1::__detail::__bessel_ik(), and std::tr1::__detail::__bessel_jn().
complex< _Tp > std::sqrt | ( | const complex< _Tp > & | __z | ) | [inline] |
Return complex square root of z.
Definition at line 891 of file complex.
Referenced by std::tr1::__detail::__airy(), std::tr1::__detail::__assoc_legendre_p(), std::tr1::__detail::__bessel_ik(), std::tr1::__detail::__bessel_jn(), std::tr1::__detail::__cyl_bessel_jn_asymp(), std::tr1::__detail::__ellint_rc(), std::tr1::__detail::__ellint_rd(), std::tr1::__detail::__ellint_rf(), std::tr1::__detail::__ellint_rj(), std::tr1::__detail::__poly_laguerre_large_n(), std::tr1::__detail::__sph_bessel_ik(), std::tr1::__detail::__sph_bessel_jn(), std::tr1::__detail::__sph_legendre(), and std::normal_distribution< _RealType >::operator()().
complex< _Tp > std::tan | ( | const complex< _Tp > & | __z | ) | [inline] |